Numerical Methods

1

The diagram shows the curve $y=\mathrm{e}^{x}+x^{2}-4$. The curve intersects the y-axis at the point A and has a stationary point at B.
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Find an equation for the tangent to the curve at A.
c Show that the x-coordinate of B lies in the interval $[-0.4,-0.3]$.
d Using the iteration formula $x_{n+1}=\frac{1}{3}\left(x_{n}-\mathrm{e}^{x_{n}}\right)$, with $x_{0}=-0.3$, find the x-coordinate of B correct to 3 decimal places.

2 The function f is defined by

$$
\mathrm{f}(x) \equiv \sin (x-6)-\ln \left(x^{2}+1\right), x \in \mathbb{R}
$$

where x is measured in radians.
The equation $\mathrm{f}(x)=0$ has a root in the interval $k<x<k+1$, where k is a positive integer.
a Find the value of k.
b Use the iteration formula $x_{n+1}=\sqrt{\mathrm{e}^{\sin \left(x_{n}-6\right)}-1}$, with $x_{0}=k$, to find three further approximations for this root, giving your answers to 4 decimal places.

3

4

The diagram shows a sector $A B C$ of a circle, centre C, radius r. Angle $A C B$ is θ radians.
Given that the ratio of the area of the shaded segment to the area of triangle $A B C$ is $1: 4$,
a show that $4 \theta-5 \sin \theta=0$,
b use the iterative formula $\theta_{n+1}=\frac{5}{4} \sin \theta_{n}$, with $\theta_{0}=1.1$, to find the value of θ correct to 2 decimal places.

$$
\mathrm{f}: x \rightarrow \mathrm{e}^{x^{2}}-x-3, x \in \mathbb{R}
$$

The equation $\mathrm{f}(x)=0$ can be rearranged into the iterative form $x_{n+1}=\sqrt{\ln \left(a x_{n}+b\right)}$.
a Find the values of the constants a and b in this formula.
The equation $\mathrm{f}(x)=0$ has a solution in the interval $(1,2)$.
b Using the iterative formula with your values from part \mathbf{a} and a suitable starting value, find this solution correct to 3 decimal places.

5

$$
\begin{align*}
& \mathrm{f}: x \rightarrow x^{2}-9, x \in \mathbb{R}, x \geq 0 \\
& \mathrm{~g}: x \rightarrow x^{3}, x \in \mathbb{R} . \tag{4}
\end{align*}
$$

a Find $\mathrm{f}^{-1}(x)$ and state its domain and range.
b On the same set of axes, sketch the curves $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$.
c Show that the equation $\mathrm{f}^{-1}(x)+\mathrm{g}(x)=0$ has a root in the interval $[-2,-1]$.
d Use the iterative formula $x_{n+1}=-\left(x_{n}+9\right)^{\frac{1}{6}}$, with $x_{0}=-1$, to find this root correct to 3 decimal places.

6 a On the same diagram, sketch the curves $y=\frac{1}{x}$ and $y=\left|-x^{2}-3 x\right|$, showing the coordinates of any points of intersection with the coordinate axes.
The curves intersect at the point P.
b Show that the x-coordinate of P can be found by solving the equation $x^{3}+3 x^{2}-1=0$.
c Use the iteration formula $x_{n+1}=\frac{1}{\sqrt{x_{n}+3}}$, with $x_{0}=0$, to find the x-coordinate of P correct to 3 decimal places.

7

The diagram shows the curve $y=x^{\frac{5}{2}}-3 x^{\frac{1}{2}}-7 x, x \geq 0$, which crosses the x-axis at the point A, where $x=\alpha$, and has a stationary point at B, where $x=\beta$.
Show that
a $4<\alpha<5$,
b $2<\beta<3$,
c $x=\beta$ is a solution to the equation $x=\sqrt{0.6+2.8 x^{\frac{1}{2}}}$.
d Use the iterative formula $x_{n+1}=\sqrt{0.6+2.8 x_{n}^{\frac{1}{2}}}$, with $x_{0}=2.1$, to find β correct to 4 significant figures.

8 The curve with equation $y=3 x-\ln x$ passes through the point $P(1,3)$.
a Find an equation for the normal to the curve at P.
The normal to the curve at P intersects the curve again at the point Q.
b Show that the x-coordinate of Q satisfies the equation

$$
\begin{equation*}
2 \ln x-7 x+7=0 \tag{1}
\end{equation*}
$$

The x-coordinate of Q is to be found using an iteration of the form $x_{n+1}=\mathrm{e}^{k\left(x_{n}-1\right)}$.
c Find the value of the constant k.
d Using $x_{0}=0.5$, find the x-coordinate of Q correct to 3 decimal places.
e Justify the accuracy of your answer to part \mathbf{d}.

