NUMERICAL METHODS

1

The diagram shows the curve $y = e^x + x^2 - 4$. The curve intersects the y-axis at the point A and has a stationary point at B.

a Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
. (1)

- **b** Find an equation for the tangent to the curve at A. (2)
- c Show that the x-coordinate of B lies in the interval [-0.4, -0.3]. (3)
- **d** Using the iteration formula $x_{n+1} = \frac{1}{3}(x_n e^{x_n})$, with $x_0 = -0.3$, find the *x*-coordinate of *B* correct to 3 decimal places. (4)
- 2 The function f is defined by

$$f(x) \equiv \sin(x-6) - \ln(x^2+1), x \in \mathbb{R}$$

where x is measured in radians.

The equation f(x) = 0 has a root in the interval k < x < k + 1, where k is a positive integer.

- a Find the value of k. (3)
- **b** Use the iteration formula $x_{n+1} = \sqrt{e^{\sin(x_n 6)} 1}$, with $x_0 = k$, to find three further approximations for this root, giving your answers to 4 decimal places. (3)

3

The diagram shows a sector ABC of a circle, centre C, radius r. Angle ACB is θ radians. Given that the ratio of the area of the shaded segment to the area of triangle ABC is 1:4,

- **a** show that $4\theta 5\sin\theta = 0$, (4)
- **b** use the iterative formula $\theta_{n+1} = \frac{5}{4} \sin \theta_n$, with $\theta_0 = 1.1$, to find the value of θ correct to 2 decimal places. (4)
- $f: x \to e^{x^2} x 3, \ x \in \mathbb{R}.$

The equation f(x) = 0 can be rearranged into the iterative form $x_{n+1} = \sqrt{\ln(ax_n + b)}$.

a Find the values of the constants a and b in this formula. (3)

The equation f(x) = 0 has a solution in the interval (1, 2).

b Using the iterative formula with your values from part a and a suitable starting value, find this solution correct to 3 decimal places.

NUMERICAL METHODS continued

f: $x \to x^2 - 9$, $x \in \mathbb{R}$, $x \ge 0$, g: $x \to x^3$, $x \in \mathbb{R}$.

- **a** Find $f^{-1}(x)$ and state its domain and range. (4)
- **b** On the same set of axes, sketch the curves y = f(x) and $y = f^{-1}(x)$. (2)
- c Show that the equation $f^{-1}(x) + g(x) = 0$ has a root in the interval [-2, -1].
- **d** Use the iterative formula $x_{n+1} = -(x_n + 9)^{\frac{1}{6}}$, with $x_0 = -1$, to find this root correct to 3 decimal places. (4)
- 6 a On the same diagram, sketch the curves $y = \frac{1}{x}$ and $y = |-x^2 3x|$, showing the coordinates of any points of intersection with the coordinate axes. (3)

The curves intersect at the point P.

- **b** Show that the x-coordinate of P can be found by solving the equation $x^3 + 3x^2 1 = 0$. (3)
- **c** Use the iteration formula $x_{n+1} = \frac{1}{\sqrt{x_n + 3}}$, with $x_0 = 0$, to find the *x*-coordinate of *P* correct to 3 decimal places. (4)

7

The diagram shows the curve $y = x^{\frac{5}{2}} - 3x^{\frac{1}{2}} - 7x$, $x \ge 0$, which crosses the x-axis at the point A, where $x = \alpha$, and has a stationary point at B, where $x = \beta$.

Show that

$$\mathbf{a} \quad 4 < \alpha < 5, \tag{2}$$

b
$$2 < \beta < 3$$
, (4)

c
$$x = \beta$$
 is a solution to the equation $x = \sqrt{0.6 + 2.8x^{\frac{1}{2}}}$. (3)

- **d** Use the iterative formula $x_{n+1} = \sqrt{0.6 + 2.8x_n^{\frac{1}{2}}}$, with $x_0 = 2.1$, to find β correct to 4 significant figures. (4)
- 8 The curve with equation $y = 3x \ln x$ passes through the point P(1, 3).
 - a Find an equation for the normal to the curve at P. (4)

The normal to the curve at P intersects the curve again at the point Q.

b Show that the x-coordinate of Q satisfies the equation

$$2\ln x - 7x + 7 = 0. ag{1}$$

The x-coordinate of Q is to be found using an iteration of the form $x_{n+1} = e^{k(x_n-1)}$.

- c Find the value of the constant k. (2)
- **d** Using $x_0 = 0.5$, find the x-coordinate of Q correct to 3 decimal places. (4)
- \mathbf{e} Justify the accuracy of your answer to part \mathbf{d} . (2)